Emissive Properties and Intramolecular Charge Transfer of Pyrazoloquinoline Derivatives

Karl Rechthaler,¹ Krystyna Rotkiewicz,² Andrzej Danel,³ Piotr Tomasik,³ Karen Khatchatryan,³ and Gottfried Köhler¹

Received October 27, 1997; accepted December 18, 1997

The fluorescence properties of several pyrazoloquinoline derivatives were performed by stationary as well as by time-resolved spectrosopy. Non-donor-substituted compounds show a high quantum yield; transition dipole moments of absorption and fluorescence as well as experimental and calculated lifetimes are in excellent agreement. The donor-substituted compound DMA-DPPQ exhibits a charge transfer fluorescence in polar solvents. Additionally, dual fluorescence appears in polar protic solvents. The nature of the charge transfer state is discussed with respect to the the TICT model.

KEY WORDS: Pyrazoloquinoline derivatives; charge transfer; emissive properties.

INTRODUCTION

Bulky π -electron donor and acceptor systems, connected by a single bond, have recently been the subject of numerous publications.⁽¹⁻⁷⁾ Special attention is paid to the structure of those large molecules in their CT excited state. For 9-[4-(*N*,*N*-dimethylamino)-phenyl]-anthracene and its derivatives as well as for 9,9'-bianthryl and different carbazole derivatives containing different cyanophenyl moieties as electron acceptors, the D–A conformation in their excited states was postulated to become more coplanar than in the ground state. Recently, some us have reported the CT interactions in excited 4-[(4'-*N*,*N*-dimethylamino)-phenyl]-3,5-dimethyl-1, 7-diphenyl-bispyrazolo-[3,4-b;4',3'-e]-pyridine (DMA-DMPP).⁽⁶⁾ In this case the problem of mutual orientation

of the donor and acceptor subunits remains an open question.

The experimental results of photophysical investigations on DMA-DMPP and theoretical calculations performed by Parusel *et al.*⁽⁸⁾ suggest the perpendicular geometry of donor and acceptor subunits in the CT state, as postulated for the so-called TICT state model.^(9,10)

Recently several new derivatives of pyrazolo[3,4b]quinoline have been synthetized. In the present paper we report the results of (i) the photophysical properties of the non-donor-substituted derivatives, (ii) the influence of substituents of pyrazoloquinoline derivatives on their emissive properties, and (iii) the photoinduced charge transfer in the donor-acceptor derivative, i.e., DMA-DPPQ (see formulae), especially the influence of the solvent properties on the process.

EXPERIMENTAL

The pyrazoloquinoline derivatives H-DMPPQ (I) (1,3-dimethyl-4-phenyl-pyrazolo[3,4-b]-quinoline), H-M₁DPPQ (II) (1-methyl-3,4-diphenyl-pyrazolo[3,4-b]-

¹ Institut für Theoretische Chemie und Strahlenchemie, University of Vienna, Althanstraβe 14, A-1090 Vienna, Austria.

² Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, PL-01-224 Warsaw, Poland.

³ H. Kołłątaj Agricultural University, al.Mickiewicza 24/28, PL-30-059 Cracow, Poland.

quinoline), H-M₃DPPQ (III) (3-methyl-1,4-diphenylpyrazolo[3,4-b]-quinoline), H-TPPQ (IV) (1,3,4-triphenyl-pyrazolo[3,4-b]-quinoline), and DMA-DPPQ (V) [4-(4'-N,N-dimethylamino)-phenyl-1,3-diphenyl-pyrazolo [3,4-b]-quinoline] (see Scheme I) were synthesized by some of us (A.D., P.T., K.Ch.). The synthesis will be described elsewhere.

Solvents used were of the highest available purity and were checked for impurities by absorption and fluorescence. The following numbering of solvents is used throughout the text: cyclohexane (1), benzene (2), toluene (3), butyl ether (4), t-butyl methyl ether (5), 1-chlorobutane (6), tetrahydrofuran (7), dichloromethane (8), 1,2-dichloroethane (9), pentanol-1 (10), butanol-1 (11), cyclohexanone (12), propanol-1 (13), ethanol (14), methanol (15), N,N-dimethylformamide (16), acetonitrile (17), and dimethyl sulfoxide (18). Absorption and fluorescence spectra as well as fluorescence decay times were measured as described previously.⁽⁶⁾

RESULTS AND DISCUSSION

Photophysical Properties of Non-Donor-Substituted Pyrazoloquinolines

All four compounds (I–IV) are characterized by a high fluorescence quantum yield, i.e., unity or almostunity, independent of solvent polarity. The absorption shows a very slight blue shift and slight red shift of fluorescence with increasing solvent polarity. It can be caused by a change of the direction and the value of the dipole moment in the excited state. The photophysical features characterizing compounds (I–IV) are collected in Table I–IV.

Absorption and normalized fluorescence spectra of all four compounds in isooctane are presented in Figs. 1 and 2, respectively. The oscillator strength *f*, the values of transition dipole moments ($\mu_{m \leftarrow n}$ in absorption, $\mu_{m \to n}$ in fluorescence), and the natural lifetime τ_f^0 are obtained using Eqs. (1)–(4).

$$f = \frac{4\ln 10 \cdot m_e c^2 \varepsilon_0}{e_0^2 N_L n_{abs}} \cdot \int \varepsilon d\tilde{\nu}$$
(1)

$$|\vec{\mu}_{m\leftarrow n}|^2 = \frac{3\ln 10 \cdot hc\varepsilon_0}{2\pi^2 N_L n_{abs} \tilde{\nu}_{abs}} \cdot \int \varepsilon d\tilde{\nu}$$
(2)

$$|\vec{\mu}_{m\to n}|^2 = \frac{3\hbar\varepsilon_0}{16\pi^3} \cdot \frac{Q_f}{n_f^3 \widetilde{\nu}_f^3 \tau_f}$$
(3)

$$\frac{1}{\tau_{\rm f}^0} = \frac{8\pi c \cdot \ln 10}{N_{\rm L}} \cdot \frac{n_{\rm f}^3}{n_{\rm abs}} \cdot \frac{1}{\langle \widetilde{\nu}_{\rm f}^{-3} \rangle_{\rm av}} \cdot \int \varepsilon d\ln \widetilde{\nu} \qquad (4)$$

In these equations n_{abs} and n_f denote the refractive indices of solvent at the absorption and fluorescence maximum, respectively, Q_f the quantum yield of fluorescence, ε the absorption coefficient, and $\tilde{\nu}_{abs}$ and $\tilde{\nu}_f$ the wavelength maxima of absorption and fluorescence, respectively. All other constants have their usual meaning.

The experimental fluorescence lifetimes τ_f are given in the tables for comparison with the calculated lifetimes.⁽¹¹⁾ The very good agreement between them (τ_f is practically equal to the natural lifetime due to the fluorescence quantum yield of unity) has to be stressed. Also, both transition dipole moments are in excellent agreement.

All these results as well as the small Stokes shift prove the stability of the pyrazoloquinoline structure, as there is practically no change in geometry after excitation. That offers the possibility of application of these compounds as fluorescence standards in the blue–green

Pyrazoloquinoline Derivatives

	Isooctane	Benzene	Butyl ether	Tetrahydrofuran	1-Chlorobutane	Acetonitrile	Ethanol
$\widetilde{\nu}_{abs}$ (cm ⁻¹)	25,140	25,020	25,160	25,190	25,160	25,290	25,210
	26,400	26,160	26,340	26,310	26,320	26,300	26,290
ϵ (m ² mol ⁻¹)	729;757	727;787	661;706	663;717	647;702	667;727	684;748
f	0.076	0.075	0.072	0.075	0.072	0.080	0.081
$ \mu_{m \leftarrow n} $ (10 ⁻³⁰ Cm)	8.2	8.2	8.1	8.2	8.0	8.5	8.5
$\tilde{\nu}_{\rm f}~(\rm cm^{-1})$	23,300	23,000	23,300	22,800	23,100	22,900	22,900
$Q_{\rm f}$	0.95	1.00	0.82	0.94	0.99	0.98	0.95
τ_{f} (ns)	14.18	13.75	12.77	14.86	14.93	17.03	16.34
$\Gamma_{\rm f}$ (cm ⁻¹)	3,000	3,100	3,100	3,200	3,100	3,200	3,200
$ \mu_{m\to n} $ (10 ⁻³⁰ Cm)	8.3	7.7	8.0	8.2	8.2	8.3	8.2
$\tau_{\rm f,calc}^{0}$ (ns)	16.2	13.4	17.2	17.0	17.3	18.3	17.2

Table I. Photophysical Properties of H-DMPPQ (I) in Several Solvents

Table II. Photophysical Properties of H-M1DPPQ (II) in Several Solvents

	Isooctane	Benzene	Butyl ether	Tetrahydrofuran	1-Chlorobutane	Acetonitrile	Ethanol
$\widetilde{\nu}_{abs}$ (cm ⁻¹)	25,940	25,770	25,930	25,850	25,900	25,950	25,910
ε (m ² mol ⁻¹)	910	893	899	916	897	879	919
f	0.098	0.088	0.096	0.099	0.097	0.100	0.103
$ \mu_{m \leftarrow n} $ (10 ⁻³⁰ Cm)	9.4	9.0	9.4	9.5	9.4	9.5	9.7
$\tilde{\nu}_{\rm f} ({\rm cm}^{-1})$	22,600	22,000	22,400	21,900	22,000	21,700	21,600
$Q_{\rm f}$	0.90	0.98	0.79	0.97	0.98	0.98	1.00
τ_{f} (ns)	14.41	13.82	12.79	15.95	16.12	19.86	20.09
$\Gamma_{\rm f}~({\rm cm}^{-1})$	3,100	3,200	3,200	3,300	3,300	3,400	3,500
$ \mu_{m\to n} $ (10 ⁻³⁰ Cm)	8.4	8.2	8.4	8.5	8.5	8.4	8.3
$\tau_{\rm f,calc}^{0}$ (ns)	13.8	12.8	14.5	14.5	14.6	17.2	16.2

Table III. Photophysical Properties of H-M₃DPPQ (III) in Several Solvents

	Isooctane	Benzene	Butyl ether	Tetrahydrofuran	1-Chlorobutane	Acetonitrile	Ethanol
$\widetilde{\nu}_{abs}$ (cm ⁻¹)	25,350	25,380	25,460	25,460	25,480	25,620	25,600
ε (m ² mol ⁻¹)	600	602	586	624	596	606	630
f	0.065	0.061	0.064	0.069	0.066	0.070	0.071
$ \mu_{m \leftarrow n} $ (10 ⁻³⁰ Cm)	7.8	7.5	7.7	8.0	7.8	8.0	8.1
\tilde{v}_{f} (cm ⁻¹)	22,000	21,400	21,700	21,300	21,400	20,800	21,300
$Q_{\rm f}$	1.00	0.98	0.92	0.88	0.97	0.78	0.90
τ_{f} (ns)	23.36	23.52	24.61	26.17	26.12	28.24	28.90
$\Gamma_{\rm f}~({\rm cm}^{-1})$	3,400	3,400	3,500	3,600	3,400	3,800	3,700
$ \mu_{m\to n} $ (10 ⁻³⁰ Cm)	7.2	6.6	6.8	6.6	6.9	6.7	6.7
$\tau_{\rm f,calc}^{0}$ (ns)	21.9	20.2	23.0	22.8	23.3	27.9	24.5

region and the issue of fluorescing probes in biological systems.

Absorption and Fluorescence Spectra of DMA-DPPQ in Neat Solvents

Introduction of the *N*,*N*-dimethylamino group in position 4' produces a molecule composed of an electron donor and a bulky π -electron acceptor. This changes the

photophysical properties remarkably. The spectra are presented in Fig. 3; photophysical data, in Table V.

The longest-wavelength absorption band, peaking at 24,300 cm⁻¹, is broad and practically independent on the solvent polarity (deviation in all solvents, ± 1 nm at most, i.e., within the error limit due to the broadness of the band). Its absorption coefficient is approximately 1200 m²mol⁻¹. The spectrum seems to show a superposition of at least two bands.

	Isooctane	Benzene	Butyl ether	Tetrahydrofuran	1-Chlorobutane	Acetonitrile	Ethanol
$\widetilde{\nu}_{abs}$ (cm ⁻¹)	24,960	24,950	25,000	25,090	25,030	25,240	25,140
ϵ (m ² mol ⁻¹)	794	807	819	860	831	799	848
f	0.088	0.081	0.091	0.094	0.093	0.092	0.096
µ _{m←n} (10 ⁻³⁰ Cm)	9.1	8.8	9.3	9.4	9.4	9.3	9.5
$\widetilde{\nu}_{\rm f}~({\rm cm}^{-1})$	21,600	21,200	21,500	21,100	21,200	20,600	21,100
$Q_{\rm f}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00
τ_{f} (ns)	17.36	16.75	17.98	20.03	19.82	24.19	21.26
$\Gamma_{\rm f}$ (cm ⁻¹)	3,100	3,100	3,200	3,300	3,200	3,400	3,300
$ \mu_{m\to n} $ (10 ⁻³⁰ Cm)	8.6	8.0	8.4	8.2	8.2	8.3	8.3
$\tau_{\rm f,calc}^{0}$ (ns)	16.9	15.3	16.8	17.0	17.0	21.4	18.4

Table IV. Photophysical Properties of H-TPPQ (IV) in Several Solvents

Fig. 1. Absorption spectra of H-DMPP (I), H-M₁DMPP (II), H-M₃DMPP (III), and H-TPPQ (IV) in isooctane.

The transition energy, intensity, and shape of the fluorescence spectra depend strongly on the solvent polarity. From the behavior of some photophysical quantities (see Fig. 4), it can be derived that the main emission in solvents more polar than 1-chlorobutane can be ascribed to a CT state. Also, the value of $\mu_{m\to n}$ changes from (13 ... 16) \cdot 10⁻³⁰ Cm in nonpolar and weakly polar solvents to $6 \cdot 10^{-30}$ Cm in the most polar one used, DMSO. In protic solvents and in some dipolar aprotic ones dual fluorescence can be seen distinctly. The dependences of the fluorescence lifetime and halfmaximum band width (Γ_t) of the main band on the solvent polarity, expressed as $\Delta f = (D - 1)/(2D + 1) - (n^2 - 1)/(2n^2 + 1)$, show similar character in aprotic solvents.

The occurrence of a minimum of τ_f versus polarity in weakly polar solvents may suggest an equilibrium between the primary excited molecules and the molecules in a state achieved as the product of an adiabatic reation, similarly to the case of the TICT-forming compound DMABN [4-(*N*,*N*-dimethylamino)-benzonitrile].^(12,13)

The changes in the slopes of the fluorescence maximum and the natural fluorescence lifetime $\tau_f^0 (= \tau_f / Q_f)$ versus Δf (Figs. 4A and D; in the case of dual fluores-

Fig. 2. Normalized fluorescence of H-DMPP (I), H-M₁DMPP (II), H-M₃DMPP (III), and H-TPPQ (IV) in isooctane.

Fig. 3. Normalized fluorescence spectra of DMA-DPPQ (V) in DMSO (18), methanol (15), 1-chlorobutane (6), and cyclohexane (1); absorption spectra of DMA-DPPQ in methanol (15) and toluene (3).

cence the maximum of the long wavelength band) in solvents of higher polarity than 1-chlorobutane lead to the conclusion that the long-wavelength band stems from a CT state, analogously to the case of DMA- DMPP.⁽⁶⁾ The transition dipole moment of the CT fluorescence is directed along the $S_1 \leftarrow S_0$ transition dipole moment, as the CT fluorescence shows a high positive fluorescence anisotropy grade ($r \approx 0.4$) if the molecule

		$\widetilde{\nu}_{f}$	Q_1	$\Gamma_{\rm f}$	$\tau_{\rm f}$	$\mu_{m \to n}$
		(cm ⁻¹)		(cm ⁻¹)	(ns)	(10 ³⁰ Cm)
1	Cyclohexane	22,300	1.00	3,000	7.38	13.0
2	Benzene	21,000	0.98	2,800	4.86	15.1
3	Toluene	21,200	0.72	2,700	4.33	13.6
4	Butyl ether	21,600	0.92	2,900	4.68	15.9
5	t-Butyl methyl ether	20,300	0.91	3,000	6.18	15.6
6	1-Chlorobutane	20,400	1.00	3,100	6.76	15.5
7	Dichloromethane	19,000	0.63	3,400	9.89	10.7
8	1,2-Dichloroethane	18,500	0.62	3,600	10.88	10.3
9	Tetrahydrofuran	18,600	0.59	3,600	10.97	10.3
10	Pentanol-1	17,000	0.21	3,800	u	9.9
11	Butanol-1	16,700	0.12	3,900	<u> </u>	8.8
12	Cyclohexanone	17,600	0.45	3,600	13.06	8.6
13	Propanol-1	16,400	0.058	3,900	u	8.4
14	Ethanol	16,400	0.039	3,700	u	6.9
15	Methanol	21,400/15,900	0.012		u	
16	N,N-Dimethylformamide	16,100	0.13	3,500	7.93	6.9
17	Acetonitrile	16,300	0.16	3,400	8.95	7.8
18	Dimethyl sulfoxide	15,900	0.070	3,400	5.32	6.0

Table V. Photophysical Properties of DMA-DPPQ (V) in Several Solvents

" Not monoexponential because of dual fluorescence.

Fig. 4. Plot of ν_{f} (A), Γ_{f} (B), $\mu_{m \rightarrow n}$ (C), and τ_{f}^{0} (D) versus Onsager's polarity function Δf .

Fig. 5. (a) Excitation spectrum of fluorescence anisotropy degree of DMA-DPPQ in butyronitrile, $\lambda_{em} = 610$ nm, T = 136 K. (b) Emission spectrum of fluorescence anisotropy degree of DMA-DPPQ in butyronitrile, $\lambda_{exc} = 400$ nm, T = 136 K.

Fig. 6. Fluorescence spectra of DMA-DPPQ in binary mixtures of toluene and acetonitrile.

Fig. 7. Fluorescence spectra of DMA-DPPQ in binary mixtures of heptane and butanol-1.

is excited to S_1 (see Fig. 5). The transition $S_2 \leftarrow S_0$ is perpendicularly polarized to the $S_1 \leftarrow S_0$ transition.

Fluorescence Spectra of DMA-DPPQ in Binary Solvent Mixtures

The influence of the solvent has also been tested in binary mixtures: hydrocarbon (nonpolar) and protic or dipolar aprotic solvent (polar). The behavior of the fluorescence is quite different in both kinds of mixtures. In binary mixtures of toluene and acetonitrile, only one fluorescence band appears, constantly red-shifting with increasing molar fractions of acetonitrile (Fig. 6). The half-maximum band width (Γ_t) passes a maximum, showing the superposition of the PE (primary excited) and the CT band. The fluorescence maximum is not a linear function of a molar fraction (it is more strongly red-shifted), thus indicating the formation of a polar inner solvent shell around the excited molecules.^(14,15)

On the contrary, in mixtures of heptane and butanol-1, dual fluorescence is seen (Fig. 7). With increasing amounts of the polar cosolvent, the long-wavelength (CT) fluorescence band increases and the short-wavelength (PE) band decreases. This suggests an energy barrier of the relaxation process to the CT state, probably caused by specific interactions with alcohol, i.e., hydrogen bonding. The total fluorescence quantum yield decreases due to widely observed proton quenching of fluorescence. The fluorescence lifetime becomes double-exponential. From a Stern–Volmer-Plot, $k_q = 5.2 \cdot 10^8$ dm³ mol⁻¹ s⁻¹ is obtained; the relatively small value of the quenching rate constant supports the assumption of specific interactions. Further investigations of the relaxation to the CT state, especially in protic solvents, are in progress.

CONCLUSION

- (1) The non-donor-substituted derivatives of pyrazolo[3,4-b]quinoline show a fluorescence quantum yield equal to unity, independent of the solvent. The geometry is changed only minimally upon excitation. These substances can be proposed as fluorescence standards for determining quantum yields.
- (2) The introduction of the dimethylamino group changes the emissive characteristics of pyrazoloquinoline dramatically. Dual fluorescence appears in polar solvents, especially in protic ones.
- (3) The long-wavelength band can be ascribed to emission from a CT excited state. The hydrogen bonding between alcohol molecules and the dimethylamino group strongly retards the relaxation to the CT state.

Pyrazoloquinoline Derivatives

ACKNOWLEDGMENTS

This work was supported by FWF (Austria, project nr. P11880-CHE), the Austrian-Polish project 01-003 and grant 8T11b00510 of Committee for Sci. Research (Poland).

REFERENCES

- 1. J. Herbich and A. Kapturkiewicz (1991) Chem. Phys. 158, 143.
- 2. J. Herbich and A. Kapturkiewicz (1993) Chem. Phys. 170, 221.
- 3. A. Kapturkiewicz, J. Herbich, J. Karpiuk, and J. Nowacki (1997) J. Phys. Chem. 101, 2332.
- 4. J. Herbich, A. Kapturkiewicz, and J. Nowacki (1996) Chem. Phys. Lett. 262, 633.
- 5. G. Grabner, K. Rechthaler, and G. Köhler (1998) J. Phys. Chem. A 102, 689.

- K. Rotkiewicz, K. Rechthaler, A. Puchala, D. Rasala, S. Styrcz, and G. Köhler (1996) J. Photochem. Photobiol. A. Chem. 98, 15.
- 7. D. Piorun, A. B. J. Parusel, K. Rechthaler, K. Rotkiewicz, and G. Köhler (submitted for publication).
- A. Parusel, R. Schamschule, D. Piorun, A. Puchala, D. Rasala, K. Rotkiewicz, and G. Köhler (1997) J. Mol. Struct. (Theochem.), 421, 63.
- Z. R. Grabowski, K. Rotkiewicz, and A. Siemiarczuk (1979) J. Lumin. 18/19, 420.
- 10. W. Rettig (1994) in *Topics of Current Chemistry, Vol. 169*, Springer, Berlin, 1994, p. 254 (and references cited therein).
- 11. S. J. Strickler and R. A. Berg (1962) J. Chem. Phys. 37, 814.
- Z. R. Grabowski, K. Rotkiewicz, W. Rubaszewska, and E. Kirkor-Kamińska (1978) Acta Phys. Polon. A54, 767.
- 13. K. Rotkiewicz and G. Köhler (1987) J. Lumin. 37, 219.
- 14. N. Kh. Petrov, A. Wiessner, T. Fiebig, and H. Staerk (1995) Chem. Phys. Lett. 241, 127.
- A. Wiessner, W. Kühnle, T. Fiebig, and H. Staerk (1997) J. Phys. Chem. A101, 350.